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Heteroaromatic rings are commonly found in biomolecules and
in synthetic molecules that exert specific biological effects (e.g.,
drugs). Noncovalent interactions involving heteroaromatic units
contribute to the stability and specificity of macromolecular
folding patterns and macromoleculbgand interactions. Hetero-
cycles engage in favorable interactions with one anéteat with
hydrocarbon aromatic unft$n aqueous solution, but the origin
of these favorable interactions remains uncfeRossible sources
of heteroaromatic “stickiness” include the hydrophobic effect,
dispersiorf, polar interactions and “donor-acceptor” interac-
tions® These interaction modes are not exclusive of one another.

In this study we use a carefully designed molecular framework
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of diesterl-1b is slightly favored in chloroform, and th&

to examine how interactions between a pheny! unit and a naphthyl configuration of dicarboxylaté-1a is more strongly favored in
unit are affected as nitrogen atoms are introduced into one orWwater; (3) the aromatic groups at either end-af cannot reach
both of these units. Our design allows us to compare data obtainedone another in the rotamer; and (4) interaction between the
in aqueous and organic solvents. The results suggest that aaphthyl group and the inner phenyl in therotamer has little
classical hydrophobic effect is not the principal determinant of ©Or no energetic significance. Comparisons among NMR-derived
noncovalent associations between an aromatic heterocycle and=/Z rotamer ratiosKez) for the compounds in Chart 1 allow us

another heterocyclic or hydrocarbon aromatic group (which we
refer to collectively as “heteroaromati¢hetero)aromatic interac-
tions”); however, aqueous solution is critical for the manifestation
of such associations.

The molecules we employ are shown in Chart 1. The interacting
aromatic groups are the fused bicyclic unit and the “outer”
aromatic ring of the biaryl unit. In a previous study bfl
(naphthyl/phenyB®we showed that (1) diestéilb crystallizes
in the E amide configuration, with direct contact between the
naphthyl group and the biphenyl group; (2) tBeonfiguration
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to determine how the attraction between the terminal aromatic
groups is modulated by introduction of ring nitrogen atoms.

One amide rotamer is significantly favored in aqueous solution
for each dicarboxylate’d NMR integration). The dominant
rotamer was identified a& for Ill-1a (quinoxalyl/phenyl)|-3a
(naphthyl/3-pyridyl), andll-5a (quinolyl/pyrimidyl) via two-
dimensional NMR analysis. These results are consistent with
previous findings fot-1a (naphthyl/phenyl}.In all four of these
cases, most aromati¢i resonances of the major rotamer were
shifted upfield relative to the minor rotamer resonances, as
expected if the terminal aromatic groups lie near one another at
least some of the time in the rotamer, but not at all in th&
rotamer. Comparable chemical shift trends were also observed
for the other dicarboxylates in Chart 1, which led us to assign
the major rotamer in aqueous solutionE&@ each case. These
assignments were supported by a consistent pattern among the
chemical shifts of the methylene protons adjacent to the biaryl
group: in each dicarboxylate, the methylene proton chemical
shifts were relatively close to one another for the minor rotamer
and significantly farther apart for the major rotaniét.

Table 1 showgz values measured inJO (24 °C) for our
series of homologous dicarboxylates, which vary only in the
number and/or position of the ring nitrogens in the terminal
aromatic group&? Also shown, in parentheses, akAGg; values
calculated relative to compouéin D,O. We previously showed

o= Ay

€0,X

Series a, X = Na

Series b, X = CH3
CO,X

thatKgz for 6ain DO is indistinguishable froniKg; for diester

6b in CDClz.° This similarity suggests that thé-, for 6ain water
represents the intrinsic rotamer preference of the tertiary amide
core. TheAAGgz values in Table 1 were calculated by converting
Kgz into AGgz, and then subtractingGg; for 6a. The AAGg;
values are small (between0.4 and—0.9 kcal/mol), but these
values are merely upper limits for the free energy of interaction
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Table 1. Kgz and AAGgz (kcal/mol; in Parentheses) for The increasing trend okgz as ring nitrogen atoms are added
Dicarboxylates in Aqueous Solutidn suggests that heteroaromatihetero)aromatic affinity in water
Ar - stems to a significant extent from an intrinsic interaction between
2-Naphthyl 3-Quinolyl  §-Quinoxalyl the aromatic groups, rather than predominantly from a mutual
(series I) (series Il) (series IIl)

] replusion of the aromatic units from the surrounding solvent, i.e.,
g Thenvi(series) 29 (0.43) 38 (059) 43 (0.59) rather than from a classical hydrophobic effect.
¥ 2.pyridyl (series 2) 3.6 (:056) 5.0 (-0.75) 5.6 (-0.82) The effect of temperature dfez provides further support for
our conclusion that the classical hydrophobic effect is not the

Suridvl(series3) 38 (059 s2 60 82607 dominant driving force for the heteroaromatihetero)aromatic
4-Pyridyl (series 4) 4.1 (-0.63) ND® ND® interactions we detect with this model system. The solubility of
5-Pyrimidy] (series 5) 5.3 (-0.79) 6.1 (:0.87) 47 (071) hydrocarbons usually diminishes as the temperature is r&ised.
This trend would be expected to lead to an increaderiotamer
2 AAGe; values, in parentheses, were calculated relativeaioas population for dicarboxylaté-1a, but we detect no significant

described in the text. The uncertainty is less than 0.Kdnand less change inKgz between 4 and 44C. In contrast, dicarboxylates
than 0.05 kcal/mol IMAGez; the level of uncertainty was determined  with heterocycles on one side or on both sides display pronounced
from multiple independent measurements and, for most molecules, fromdecreasesn E rotamer population at elevated temperatufe;(
integration of two or more set_s_ of_ proton resonances. All measurements_— 5.7 at 4°C and 4.7 at 44C for I-5a (naphthyl/pyrimidyl);
were made aE/Z rotamer equilibrium, under conditions that precluded Kez = 6.9 at 4°C and 5.1 at 44C for II-5a (quinolyl/pyrimidyi)).

aggregation. Measurements were made in mildly alkaline solution (pH : 7
9g—§:’L0)gto avoid heterocyclic ring protonatioh?l’he)s/e values were noEp These results suggest that heteroaromdtietero)aromatic in-
determined, because the molecules could not be purified. teractions in water are enthalpically favorable, as is observed for
the stacking of DNA/RNA basés.
. . The dimethyl esters in our tertiary amide series were examined
between the aromatic units. Each molecule has several degreeg, organic solvents to evaluate the contribution of solvation to
of conformational freedom, and the molecular skeleton therefore Kez. In CDCL, these diesters display a small and consisent

does not enforce aromati@romatic contact in th& rotamer. conformational preferencek¢; = 1.5 + 0.2). Diesterl-5b

Preferred aromatiearomatic geometries may vary among these (naphthyl/pyrimidyl) was examined in solvents with widely varied
molecules. It is possible that optimal geometries are disfavored polarity, but very little change in rotamer ratio was obseniégh (

by the linker. _ _ = 1.2in CCl, 1.3 in CDC}, and 1.8 in either (CE,S=0 or

Relative to the nonheterocycliela, intramolecular aromatie CD;0D). The contrast between the relatively homogeneous
aromatic affinity in water is enhanced by introduction of nitrogen penavior of the diesters in organic solvents and the variations
atoms into the naphthyl unike, F)rder: I-la < Il-la < il-1a) among the dicarboxylates in water (Table 1) indicates that aque-
or into the phenyl unitke; order: I-1a < I-2a~ |-3a~ I-4a < ous solution is essential for manifestation of heteroaromatic
I-5a). These trends suggest that heteroaromatiomatic attrac- (hetero)aromatic affinity.

tions arise to a significant extent from factors other than a classical Our data raise the possibility that heteroaromagretero)aro-
hydrophobic effect, because the classical hydrophobic contribution yatic attractions in water have a significant polar component,

to E rotamer stability should be maximal inla (naphthyl/ o "5 component that involves local dipoles and/or higher
phenyl). The defining manifestation of the classical hydrophobic multipoles within the ring@¢ The polar interaction hypothesis
effect is the low solubility of hydrocarbons in watér.The is consistent with the general increase in intramolecular aromatic

solubility limit of benzen4e in aqueous solution at room temper-  gromatic association as nitrogen atoms are added (Table 1). There
ature is 1.8 g/L (23 mM})/but pyridine and pyrimidine are very 516 some deviations from this trend (e.gis5a (quinolyl/

soluble in watet> Thus,_replacement of a_rqmatic ring-El wit_h _ pyrimidyl) vs lll-5a _(quinoxalyl/pyrimidyl)), which can also be
N leads to a decrease in net hydrophobicity of the aromatic unit. gyplained in terms of polar interactions: the deviations presum-
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